

Series Z1XYW/4

SET~3

प्रश्न-पत्र कोड Q.P. Code

31/4/3

रोल नं. Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं।

- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 39 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पहेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **39** questions.
- Please write down the Serial Number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

विज्ञान (सैद्धान्तिक) **SCIENCE (Theory)**

निर्धारित समय : 3 घण्टे अधिकतम अंक : 80

Time allowed: 3 hours Maximum Marks: 80

31/4/3 **→** 1 **→** [P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 39 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र **पांच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** तथा **ड़।**
- (iii) खण्ड क में प्रश्न संख्या 1 से 20 तक बहविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) **खण्ड ख** में प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय (VSA) प्रकार के **दो-दो** अंकों के प्रश्न हैं। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- (v) **खण्ड ग** में प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय (SA) प्रकार के **तीन-तीन** अंकों के प्रश्न हैं। इन प्रश्नों के उत्तर 50 से 80 शब्दों में दिए जाने चाहिए।
- (vi) खण्ड घ में प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय (LA) प्रकार के **पांच-पांच** अंकों के प्रश्न हैं। इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए।
- (vii) खण्ड ड़ में प्रश्न संख्या 37 से 39 तक स्रोत आधारित / प्रकरण आधारित इकाइयों के मूल्यांकन के चार–चार अंकों के प्रश्न (उप–प्रश्नों सिहत) हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, कुछ खण्डों में आन्तरिक विकल्प दिए गए हैं।

खण्ड - क (बहविकल्पीय प्रश्न)

- 1. जब पोटैशियम आयोडाइड और लेड नाइट्रेट के जलीय विलयन मिलते हैं तो एक अविलेय पदार्थ अलग हो जाता है। इसमें होने वाली अभिक्रिया का रासायनिक समीकरण है:
 - (a) $KI + PbNO_3 \longrightarrow PbI + KNO_3$
 - (b) $2KI + Pb(NO_3)_2 \longrightarrow PbI_2 + 2KNO_3$
 - (c) $KI + Pb(NO_3)_2 \longrightarrow PbI + KNO_3$
 - (d) $KI + PbNO_3 \longrightarrow PbI_2 + KNO_3$
- 2. जब सोडियम बाइकार्बोनेट हाइड्रोक्लोरिक अम्ल से अभिक्रिया करता है, तो :
 - (a) हाइड्रोजन गैस निकलती है जो जलती तीली से पॉप ध्विन देती है।
 - (b) हाइड्रोजन गैस निकलती है जो चूने के पानी को दूधिया कर देती है।
 - (c) कार्बन डाइऑक्साइड गैस निकलती है जो चूने के पानी को दूधिया कर देती है।
 - (d) कार्बन डाइऑक्साइड गैस निकलती है जो जलती तीली को पॉप ध्विन के साथ बुझा देती है।
- 3. टमाटर में उपस्थित अम्ल है :
 - (a) मेथानॉइक अम्ल

(b) ऐसीटिक अम्ल

(c) लैक्टिक अम्ल

- (d) ऑक्सैलिक अम्ल
- **4.** किसी धातु 'X' का रिबन ऑक्सीजन में चकाचौंध करने वाले श्वेत प्रकाश की ज्वाला से जलता है जिसमें कोई श्वेत राख 'Y' बनती है। इस अभिक्रिया में X,Y और होने वाली अभिक्रिया के प्रकार का सही विवरण इस प्रकार है :
 - (a) X = Ca; Y = CaO; अभिक्रिया का प्रकार = वियोजन
 - (b) X = Mg; Y = MgO; अभिक्रिया का प्रकार = संयोजन
 - (c) X = Al; $Y = Al_2O_3$; अभिक्रिया का प्रकार = ऊष्मीय वियोजन
 - (d) X = Zn; Y = ZnO; अभिक्रिया का प्रकार = ऊष्माशोषी

31/4/3

2

1

1

1

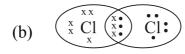
GENERAL INSTRUCTIONS:

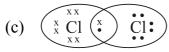
Read the following instructions very carefully and follow them:

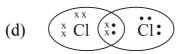
- (i) This question paper consists of 39 questions. All questions are compulsory.
- (ii) Question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) In **section** A question number 1 to 20 are multiple choice questions (MCQs) carrying 1 mark each.
- (iv) In **section B** question number 21 to 26 are very short answer (VSA) type questions carrying **2** marks each. Answer to these questions should be in the range of 30 to 50 words.
- (v) In section C question number 27 to 33 are short answer (SA) type questions carrying 3 marks each. Answer to these questions should in the range of 50 to 80 words.
- (vi) In section **D** question number 34 to 36 are long answer (LA) type questions carrying **5** marks each. Answer to these questions should be in the range of 80 to 120 words.
- (vii) In section E question number 37 to 39 are of 3 source based/case based units of assessment carrying 4 marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections.

SECTION – A(Multiple Choice Questions)


- 1. When aqueous solutions of potassium iodide and lead nitrate are mixed, an insoluble substance separates out. The chemical equation for the reaction involved is:
 - (a) $KI + PbNO_3 \longrightarrow PbI + KNO_3$
 - (b) $2KI + Pb(NO_3)_2 \longrightarrow PbI_2 + 2KNO_3$
 - (c) $KI + Pb(NO_3)_2 \rightarrow PbI + KNO_3$
 - (d) $KI + PbNO_3 \longrightarrow PbI_2 + KNO_3$
- **2.** When Sodium bicarbonate reacts with dilute hydrochloric acid, the gas evolved is:
 - (a) Hydrogen; it gives pop sound with burning match stick.
 - (b) Hydrogen; it turns lime water milky.
 - (c) Carbon dioxide; it turns lime water milky.
 - (d) Carbon dioxide; it blows off a burning match stick with a pop sound.
- **3.** Acid present in tomato is:
 - (a) Methanoic acid (b) Acetic acid
 - (c) Lactic acid (d) Oxalic acid
- 4. A metal ribbon 'X' burns in oxygen with a dazzling white flame forming a white ash 'Y'. The correct description of X, Y and the type of reaction is:
 - (a) X = Ca; Y = CaO; Type of reaction = Decomposition
 - (b) X = Mg; Y = MgO; Type of reaction = Combination
 - (c) X = Al; $Y = Al_2O_3$; Type of reaction = Thermal decomposition
 - (d) X = Zn; Y = ZnO; Type of reaction = Endothermic


1

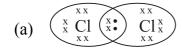

1

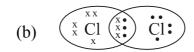


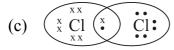
- 5. जल की कठोरता को दूर करने के लिए उपयोग किए जाने वाले लवण का नाम है :
 - (a) सोडियम हाइड्रोजन कार्बोनेट (NaHCO₃)
 - (b) सोडियम क्लोराइड (NaCl)
 - (c) सोडियम कार्बोनेट डेकाहाइड्रेट ($Na_2CO_3.10H_2O$)
 - (d) कैल्सियम सल्फेट हेमीहाइड्रेट ($CaSO_4$. $\frac{1}{2}H_2O$)
- 6. क्लोरीन के अणु की इलेक्ट्रॉन-बिन्दु संरचना है :

- 7. सोडियम हाइड्रॉक्साइड क्षार (ऐल्कली) है जबिक फेरिक हाइड्रॉक्साइड क्षार (ऐल्कली) नहीं है, क्योंकि :
 - (a) सोडियम हाइड्रॉक्साइड प्रबल क्षारक है जबिक फेरिक हाइड्रॉक्साइड दुर्बल क्षारक है।
 - (b) सोडियम हाइड्रॉक्साइड ऐसा क्षारक है जो जल में विलेय है जबिक फेरिक हाइड्रॉक्साइड भी क्षारक है परन्तु यह जल में विलेय नहीं है।
 - (c) सोडियम हाइड्रॉक्साइड प्रबल क्षारक है जबिक फेरिक हाइड्रॉक्साइड प्रबल अम्ल है।
 - (d) सोडियम हाइड्रॉक्साइड और फेरिक हाइड्रॉक्साइड दोनों ही प्रबल क्षारक हैं परन्तु सोडियम हाइडॉक्साइड की जल में विलेयता फेरिक हाइड्रॉक्साइड की जल में विलेयता की तुलना में अधिक है।
- 8. रंध्रों के खुलने और बन्द होने का कारण है :

1


1


- (a) कोशिकाओं के भीतर गैसों का उच्च दाब
- (b) द्वार कोशिकाओं में जल की बाहर और भीतर गति
- (c) द्वार कोशिकाओं में प्रकाश का उद्दीपन
- (d) द्वार कोशिकाओं में CO2 का भीतर और बाहर विसरण
- 9. जड़ों में जल के प्रवेश करने का कारण है :


1

- (a) जड़ों का जल को अवशोषित करने का कार्य
- (b) मृदा और जड़ों के बीच आयनों की सांद्रता में अन्तर
- (c) मृदा में जल आधिक्य की उपस्थिति
- (d) जड़ों में जल का विसरण

- **5.** The name of the salt used to remove permanent hardness of water is :
 - (a) Sodium hydrogen carbonate (NaHCO₃)
 - (b) Sodium chloride (NaCl)
 - (c) Sodium carbonate decahydrate (Na₂CO₃.10H₂O)
 - (d) Calcium sulphate hemihydrate (CaSO₄. $\frac{1}{2}$ H₂O)
- **6.** The electron dot structure of chlorine molecule is :

- 7. Sodium hydroxide is termed an alkali while Ferric hydroxide is not because:
 - (a) Sodium hydroxide is a strong base, while Ferric hydroxide is a weak base.
 - (b) Sodium hydroxide is a base which is soluble in water while Ferric hydroxide is also a base but it is not soluble in water.
 - (c) Sodium hydroxide is a strong base while Ferric hydroxide is a strong acid.
 - (d) Sodium hydroxide and Ferric hydroxide both are strong base but the solubility of Sodium hydroxide in water is comparatively higher than that of Ferric hydroxide.
- **8.** Opening and closing of stomata is due to:
 - (a) High pressure of gases inside the cells.
 - (b) Movement of water in and out of the guard cells.
 - (c) Stimulus of light in the guard cells.
 - (d) Diffusion of CO₂ in and out of the guard cells.
- **9.** Water in the root enters due to :
 - (a) the function of the root to absorb water.
 - (b) difference in the concentration of ions between the root and the soil.
 - (c) excess water present in the soil.
 - (d) diffusion of water in the roots.

31/4/3

5

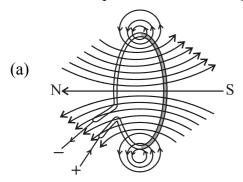
[P.T.O.

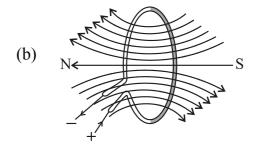
1

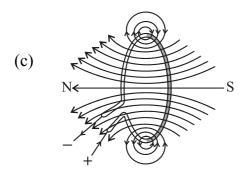
1

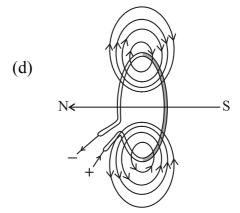
1

1


- 10. नीच दिया गया कौनसा कथन सत्य है ?
 - (a) DNA में किसी विशेष लक्षण की पूर्ण सूचना होती है।
 - (b) DNA वह अणु है जो जनकों से संतितयों में वंशागत लक्षणों के लिए उत्तरदायी है।
 - (c) सूचना में परिवर्तन भिन्न प्रोटीन उत्पन्न करेगा।
 - (d) प्रोटीन में परिवर्तन होने पर लक्षण (विशेषताएं) समान रहेंगे।
- 11. किसी प्रतिवर्ती चाप में संवेदी तंत्रिका कोशिका सूचना को ग्राही कोशिकाओं से कहाँ तक पहुंचाती है ?
 - (a) मेरू रज्जु

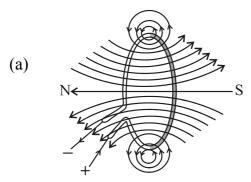

- (b) मस्तिष्क
- (c) कार्यकर अंग की पेशियाँ
- (d) ग्राही अंग की अस्थियाँ
- 12. श्वेत पुष्पों के मटर के पौधों (vv) और बैंगनी पुष्पों के मटर के पौधों (VV) के बीच संकरण के परिणामस्वरूप F_2 संतित प्राप्त हुई, जिसमें बैंगनी (VV) और श्वेत (vv) पुष्पों वाले पौधों का अनुपात होगा :
 - (a) 1:1
- (b) 2:1
- (c) 3:1
- (d) 1:3


1

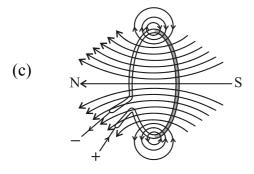

1

13. किसी धारावाही वृत्ताकार पाश द्वारा उत्पन्न चुम्बकीय क्षेत्र की चुम्बकीय क्षेत्र रेखाओं का सही पैटर्न है : 1

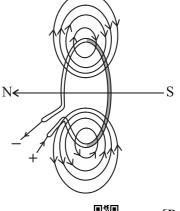
31/4/3


- **10.** Which one of the given statements is incorrect:
 - (a) DNA has the complete information for a particular characteristic.
 - (b) DNA is the molecule responsible for the inheritance of characters from parents to offsprings.
 - (c) Change in information will produce a different protein.
 - (d) Characteristics will remain the same even if protein changes.
- 11. Sensory nerve of a reflex arc carries information from the receptor cells to the :
 - (a) spinal cord
 - (b) brain
 - (c) muscles of the effector organ
 - (d) bones of the receptor organ
- 12. A cross between pea plant with white flowers (vv) and pea plant with violet flowers (VV) resulted in F_2 progeny in which ratio of violet (VV) and white (vv) flowers will be:
 - (a) 1:1
- (b) 2:1
- (c) 3:1
- (d) 1:3

1


1

1

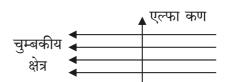

13. The correct pattern of magnetic field lines of the field produced by a current carrying circular loop is:

31/4/3

7

[P.T.O.

14. 12W और 6W के दो LED बल्ब श्रेणी में संयोजित हैं। यदि 12W के बल्ब से 0.06A धारा प्रवाहित हो रही है, तो 6W के बल्ब से प्रवाहित धारा होगी :


1

1

1

- (a) 0.04A
- (b) 0.06A
- (c) 0.08A
- (d) 0.12A

15. दर्शाए अनुसार कोई एल्फा कण किसी एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है। इस एल्फा कण की गित की दिशा होगी:

- (a) दाहिनी ओर
- (b) बाईं ओर
- (c) कागज़ में भीतर की ओर जाते हुए
- (d) कागज़ से बाहर की ओर आते हुए
- 16. किसी प्रतिरोधक के मान को घटाकर उसके प्रारम्भिक मान का आधा कर दिया गया है। यदि विद्युत परिपथ के अन्य प्राचलों में कोई परिवर्तन नहीं होता है, तो प्रतिरोधक में उत्पन्न ऊष्मा होगी:
 - (a) चार गुनी
 - (b) दो गुनी
 - (c) आधी
 - (d) चौथाई

प्रश्न संख्या 17 से 20 तक अभिकथन और कारण आधारित प्रश्न हैं। इनमें दो कथन, अभिकथन (A) और कारण (R) दिए गए हैं। नीचे दिए गए विकल्पों में से उपयुक्त विकल्प का चयन करते हुए इन प्रश्नों के उत्तर दीजिए।

- (a) (A) तथा (R) दोनों सत्य हैं और (R), (A) की सही व्याख्या करता है।
- (b) (A) तथा (R) दोनों सत्य हैं परन्तु (R), (A) की सही व्याख्या नहीं करता है।
- (c) (A) सत्य है परन्तु (R) असत्य है।
- (d) (A) असत्य है परन्तु (R) सत्य है।
- 17. अभिकथन (A): मानवों में यदि काले नेत्रों के लिए जीन (B) उत्तरदायी है और भूरे नेत्रों के लिए जीन (b) उत्तरदायी है, तो जिस संतित का जीन संयोजन Bb, bb अथवा BB है, तो उसके नेत्रों का वर्ण (रंग) केवल काला ही होगा।

कारण (R): नेत्रों का काला वर्ण प्रभावी लक्षण है।

1

1

18. अभिकथन (A): बिना बुझे चूने की पानी से अभिक्रिया ऊष्माक्षेपी अभिक्रिया है।

कारण (R) : बिना बुझा चूना पानी से बहुत तीव्र अभिक्रिया करके अत्यधिक मात्रा में ऊष्मा उत्पन्न करता है।

]

31/4/3 景温

14.						I in series. If the current W bulb will be:	nt 1
	(a)	0.04A	(b) 0.06A	Α ((c) 0.08A	(d) 0.12A	
15.		alpha particle on the algorithms.			gnetic field	l as shown. The direction	on 1
	(a)	towards right				α-particle	
	(b)	towards left		Magnetic	—	<u> </u>	
	(c)	into the page		Field	•		
	(d)	out of the pag	ge				
16.	para		electrical	circuit rer		its initial value. If other ered, the amount of hea	
	(a)	four times					
	(b)	two times					
	(c)	half					
	(d)	one fourth					
Thes	e coi	to 20 are Assonsist of two states	tatements	- Assert	ion (A) a	nd Reason (R). Answe	er
	(a)	Both (A) and	(R) are tru	e and (R)	is the corre	ect explanation of (A).	
	(b)	Both (A) and	(R) are tru	e but (R)	is not the c	correct explanation of (A	a).
	(c)	(A) is true bu	t(R) is fals	se.			
	(d)	(A) is false bu	ıt (R) is tru	ie.			
17.	gene	e (b) is respon	nsible for ne combina	brown ey ation Bb, l	es, then the bb or BB v	nsible for black eyes and ne colour of eyes of the vill be black only. minant trait.	
18.		ertion (A):	Reaction of	of Quickl	ime with	water is an exotherm	ic
		son (R): Qui	cklime rea	acts vigor	ously with	n water releasing a larg	ge 1

19.	अभिकथन (A) : जब किसी धारावाही सीधे चालक को चुम्बकीय क्षेत्र में उसकी दिशा के लम्बवत् रखा जाता है, तो वह चालक बल का अनुभव करता है।	
	कारण (R): किसी धारावाही चालक पर नेट आवेश शून्य होता है।	1
20.	अभिकथन (A) : क्षुद्रांत्र के आन्तरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं, जिन्हें दीर्घरोम कहते हैं और इनमें रुधिर की बहुतायत होती है।	
	कारण (R): इन दीर्घरोमों का पृष्ठीय क्षेत्रफल अधिक होता है, जो भोजन के पूर्ण पाचन में क्षुद्रांत्र की सहायता करता है।	1
	खण्ड – ख	
	(अति लघु-उत्तरीय प्रश्न)	
21.	उस पादप हॉर्मोन का नाम लिखिए जो किसी पादप के प्ररोह को उस समय झुकने के लिए उत्तरदायी होता है जब उस पर कोई एकदिशिक प्रकाश पड़ता है। यह हॉर्मोन किस प्रकार प्रकाशानुवर्त को प्रेरित करता है ?	2
22.	(A) किसी छात्र ने एक शंक्वाकार फ्लास्क में कॉपर ऑक्साइड की कुछ मात्रा लेकर उसमें मिश्रण को लगातार विलोडित करते हुए तनु हाइड्रोक्लोरिक अम्ल मिलाया। उसने विलयन के रंग में परिवर्तन का प्रेक्षण किया।	2
	(i) बनने वाले यौगिक का नाम और उसका रंग लिखिए।	
	(ii) होने वाली अभिक्रिया का संतुलित रासायनिक समीकरण दीजिए।	
	अथवा	
	(B) कॉस्टिक सोडा के औद्योगिक निर्माण की प्रक्रिया में किसी यौगिक ' X ' के जलीय विलयन का विद्युत अपघटन किया जाता है। इस प्रक्रिया में दो गैसें ' Y ' और ' Z ' निकलती हैं। ' Y ' कैथोड पर निकलती है और ' Z ' जो कि ऐनोड पर निकलती है, शुष्क बुझे हुए चूने से अभिक्रिया करके कोई यौगिक ' B ' बनाती है। X,Y,Z और B के नाम लिखिए।	2
23.	दो हरे पौधों को ऑक्सीजन रहित पात्रों में बन्द करके एक को सूर्य के प्रकाश में तथा दूसरे को अंधेरे में रखा गया है। प्रेक्षण करने पर यह पाया गया कि अंधेरे में रखा गया पौधा अधिक समय तक जीवित नहीं रह सका। इस प्रेक्षण के लिए कारण लिखिए।	2
24.	'ऊतक तरल' का अन्य नाम क्या है ? इसके दो कार्य लिखिए।	2

31/4/3

19.	Assertion (A): A current carrying straight conductor experiences a force
	when placed perpendicular to the direction of magnetic field.

Reason (R): The net charge on a current carrying conductor is always zero.

20. Assertion (A): The inner walls of the small intestine have finger like projections called villi which are rich in blood.

Reason (R): These villi have a large surface area to help the small intestine in completing the digestion of food.

SECTION – B (Very Short Answer Questions)

- 21. Name a plant hormone responsible for bending of a shoot of a plant when it is exposed to unidirectional light. How does it promote phototropism?
- **22. (A)** A student took a small amount of copper oxide in a conical flask and added dilute hydrochloric acid to it with constant stirring. He observed a change in colour of the solution.
 - (i) Write the name of the compound formed and its colour.
 - (ii) Write a balanced chemical equation for the reaction involved.

OR

- (B) The industrial process used for the manufacture of caustic soda involves electrolysis of an aqueous solution of compound 'X'. In this process, two gases 'Y' and 'Z' are liberated. 'Y' is liberated at cathode and 'Z', which is liberated at anode, on treatment with dry slaked lime forms a compound 'B'. Name X, Y, Z and B.
- 23. Two green plants are kept separately in oxygen free containers, one in the dark and other in sunlight. It was observed that plant kept in dark could not survive longer. Give reason for this observation.
- 24. What is the other name of 'tissue fluid'? Write its two functions.

11

31/4/3

050 500

[P.T.O.

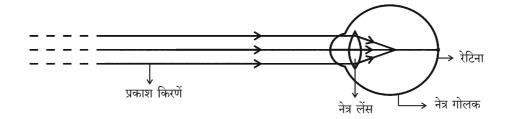
1

1

2

2

2



- 25. ''यद्यपि बगीचों का निर्माण मनुष्य द्वारा किया जाता है परन्तु इन्हें पारितंत्र माना जाता है।'' इस कथन की पृष्टि कीजिए।
 - 2

2

3

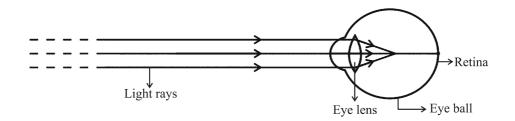
26. (A) नीचे दिए गए आरेख का प्रेक्षण करके निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) नेत्र के दृष्टिदोष को पहचानिए।
- (ii) इस दोष के दो कारणों की सूची बनाइए।
- (iii) इस दृष्टिदोष के संशोधन के लिए उपयोग किए जाने वाले लेंस के प्रकार का नाम लिखिए।

अथवा

(B) पृथ्वी से प्रेक्षण करने पर स्वच्छ आकाश का रंग नीला दृष्टिगोचर होता है परन्तु अंतरिक्ष में यह काला दिखाई देता है। क्यों ?

खण्ड - ग (लघ्-उत्तरीय प्रश्न)


27. नीचे दिए गए लवणों पर विचार कीजिए :

- (i) YCl
- (ii) NH₄X
- (iii) ZCO₃
- (a) यदि YCl में Y सोडियम है तो इस लवण के विलयन का pH क्या होगा ? अपने उत्तर के लिए कारण दीजिए।
- (b) यदि लवण NH_4X में X नाइट्रेट है, तो इस लवण का विलयन सार्विक सूचक के साथ क्या रंग देगा ? ऐसा क्यों ?
- (c) यदि ZCO_3 में Z पोटैशियम है, तो इस लवण का विलयन नीले लिटमस विलयन के रंग में क्या परिवर्तन करेगा ?
- 28. (i) जल का विद्युत अपघटन करते समय विद्युत धारा प्रवाहित करने से पूर्व जल में किसी अम्ल की कुछ बूंदें मिलायी जाती हैं। क्यों ? कैथोड और ऐनोड पर मुक्त होने वाली गैसों के नाम लिखिए। कैथोड पर संचित गैस के आयतन और ऐनोड पर संचित गैस के आयतन के बीच संबंध लिखिए।
 - (ii) उस समय आप क्या प्रेक्षण करते हैं जब सिल्वर क्लोराइड को सूर्य के प्रकाश में उदभासित किया जाता है ? होने वाली अभिक्रिया के प्रकार का नाम लिखिए।

- 25. "Although gardens are created by man but they are considered to be an ecosystem." Justify this statement.
- 2
- **26.** (A) Observe the following diagram and answer the questions following it:

- Identify the defect of vision shown. (i)
- (ii) List its two causes.
- (iii) Name the type of lens used for the correction of this defect.

OR

(B) The colour of clear sky from the earth appears blue but from the space it appears black. Why?

2

SECTION - C (Short Answer Questions)

27. Consider the following salts:

3

- YC1 (i)
- (ii) NH₄X
- (iii) ZCO₃
- What would be the pH of the salt solution if in YCl, Y is sodium? Give reason for your answer.
- If in salt NH₄X, X is nitrate, then its solution will give what colour with universal indicator? Why?
- What would be the change in colour in blue litmus solution if ZCO₃ is added to it and Z is potassium?
- 28. While electrolysing water before passing the current some drops of 3 an acid are added. Why? Name the gases liberated at cathode and anode. Write the relationship between the volume of gas collected at anode and the volume of gas collected at cathode.
 - (ii) What is observed when silver chloride is exposed to sunlight? Give the type of reaction involved.

[P.T.O.

31/4/3

किसी गोलीय दर्पण से 20 cm की दूरी पर किसी बिम्ब को रखने पर उत्पन्न आवर्धन +1/2 है। 29. आवर्धन को घटाकर +1/3 करने के लिए बिम्ब को कहाँ रखा जाना चाहिए ?

3

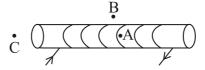
पैरामीशियम अपना भोजन किस प्रकार प्राप्त करता है ? **30. (A)** (i)

3

- (ii) हमारे पाचन तंत्र में निम्नलिखित में से प्रत्येक की भूमिका लिखिए :
 - (a) हाइड्रोक्लोरिक अम्ल
 - (b) ट्रिप्सिन
 - (c) आमाशय की पेशीय भित्तियाँ
 - (d) लाला रस (लार)

अथवा

(B) (i) दोहरा परिसंचरण किसे कहते हैं ?


3

- (ii) हृदय के दाहिने भाग और बाएं भाग का पृथक्कन क्यों उपयोगी है ? यह पक्षियों और स्तनपायियों की किस प्रकार सहायता करता है ?
- (A) (i) प्रत्यावर्ती धारा (A.C.) को दिष्ट धारा (D.C.) की तुलना में विद्युत शक्ति के सुदूर 31. 3 स्थानों पर प्रेषण के लिए अधिक लाभकारी क्यों माना जाता है ?
 - (ii) घरेलू आपूर्ति के लिए उपयोग होने वाली इस प्रकार की धारा शुष्क सेलों अथवा बैटरियों से प्राप्त धारा से किस प्रकार भिन्न होती है ?
 - (iii) विद्युत प्यूज किस प्रकार विद्युत परिपथ और विद्युत साधित्रों को लघुपथन अथवा अतिभारण के कारण होने वाली संभावित क्षति से बचाता है ?

अथवा

(B) दर्शायी गयी धारावाही परिनालिका के चुम्बकीय क्षेत्र को आरेखित कीजिए और कारण सहित व्याख्या कीजिए कि तीन बिन्दुओं A, B और C में किस बिन्दु पर क्षेत्र की तीव्रता अधिकतम और किस पर निम्नतम है ?

3

जैव निम्नीकरणीय और अजैव निम्नीकरणीय अपशिष्टों के बीच एक अन्तर लिखिए। इनमें से 32. प्रत्येक प्रकार के अपशिष्टों के संचित होने पर पर्यावरण पर होने वाले दो-दो अधिप्रभावों की सूची बनाइए।

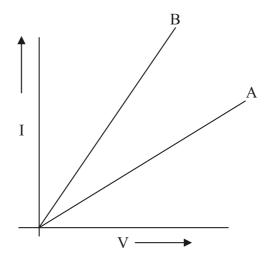
14

3

31/4/3

f d 3
3
3
e
e 3
t
e r
s t s
3
e 1 3
ne esta

33. (A) श्वेत प्रकाश के विक्षेपण की परिभाषा लिखिए। काँच के प्रिज़्म से गुजरने पर प्रकाश के उस वर्ण (रंग) का उल्लेख कीजिए जो (i) सबसे अधिक, (ii) सबसे कम मुड़ता है। श्वेत प्रकाश के विक्षेपण को दर्शाने के लिए आरेख खींचिए।


अथवा

3

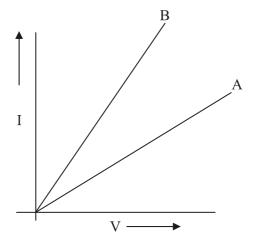
(B) इन्द्रधनुष क्या होता है ? इसके बनने को दर्शाने के लिए नामांकित आरेख खींचिए। 3

खण्ड - घ (दीर्घ-उत्तरीय प्रश्न)

- **34.** (i) हाइड्रा में प्रेक्षण की जाने वाली अलैंगिक जनन की दो विधाओं के नाम लिखिए और उनकी **5** व्याख्या कीजिए।
 - (ii) कायिक प्रवर्धन किसे कहते हैं ? इस तकनीक को उपयोग किए जाने के दो लाभों की सूची बनाइए।
- 35. (i) किसी चालक के सिरों के बीच विभवान्तर और उससे प्रवाहित धारा परस्पर किस प्रकार 5 संबंधित है ?
 इस संबंध को सत्यापित करने के लिए विद्युत परिपथ आरेख खींचिए।
 - (ii) अमीटर का प्रतिरोध निम्न क्यों होना चाहिए ?
 - (iii) दो प्रतिरोधकों के श्रेणी और पार्श्व संयोजनों के लिए दो V I ग्राफ A और B आरेख में दर्शाए गए हैं। कारण सिंहत उल्लेख कीजिए कि इनमें से कौनसा ग्राफ प्रतिरोधकों के (a) श्रेणी, (b) पार्श्व संयोजन को दर्शाता है।

31/4/3

33. (A) Define the term dispersion of white light. State the colour which bends (i) the most, (ii) the least while passing through a glass prism. Draw a diagram to show the dispersion of white light.


3

OR

(B) What is a rainbow? Draw a labelled diagram to show its formation. 3

SECTION - D (Long Answer Questions)

- 34. (i) Name and explain the two modes of asexual reproduction observed in 5 hydra.
 - What is vegetative propagation? List two advantages of using this technique.
- 35. How is electric current related to the potential difference across the 5 terminals of a conductor? Draw a labelled circuit diagram to verify this relationship.
 - (ii) Why should an ammeter have low resistance?
 - (iii) Two V I graphs A and B for series and parallel combinations of two resistors are as shown. Giving reason state which graph shows (a) series, (b) parallel combination of the resistors.

31/4/3

[P.T.O.

(A) निम्नलिखित के लिए संतुलित रासायनिक समीकरण लिखिए: **36.**

5

(i) मेथैन का दहन

- (ii) एथनॉल का उपचयन
- (iii) एथीन का हाइड्रोजनीकरण
- (iv) एस्टरीकरण अभिक्रिया
- (v) साबुनीकरण अभिक्रिया

अथवा

ब्यूटेन के दो संरचनात्मक समावयव खींचिए। **(B)**

5

- (ii) प्रोपैनॉल और प्रोपैनोन की संरचना खींचिए।
- (iii) निम्नलिखित के तीसरे समजात का नाम लिखिए :
 - (a) ऐल्कोहॉल
- (b) ऐल्डिहाइड
- (iv) निम्नलिखित का नाम लिखिए:

- (b) $CH_3-CH_2CH = CH_2$
- (v) नाइट्रोजन-अणु में सहसंयोजी आबंध बनना दर्शाइए।

खण्ड – ड् (स्रोत आधारित/प्रकरण आधारित प्रश्न)

- जनन प्रक्रिया का सर्वाधिक प्रत्यक्ष निष्कर्ष संतति में व्यष्टियों का समरूप डिजाइन होना है, परन्त् 37. 4 लैंगिक जनन में वे तथ्यतः समरूप नहीं होते हैं। इनमें समरूपताएं और विभिन्नताएं सुस्पष्ट होती हैं। वंशागित के नियम उस प्रक्रिया को निर्धारित करते हैं जिसके द्वारा लक्षण और विशेषताएं विश्वसनीयता से वंशानुगत होती हैं। वंशागित के नियमों के अध्ययन के लिए कई प्रयोग किए गए हैं।
 - लैंगिक जनन में मानवों की संतित अपने जनकों की यथातथ्य प्रतिकृति क्यों नहीं होती है ? 1

36. (A) Write the chemical equation for the following:

5

- Combustion of methane (i)
- (ii) Oxidation of ethanol
- (iii) Hydrogenation of ethene
- (iv) Esterification Reaction
- (v) Saponification Reaction

OR

Draw two structural isomers of butane. **(B)** (i)

5

- (ii) Draw the structures of propanol and propanone.
- (iii) Name the third homologue of:
 - (a) alcohols
- (b) aldehydes
- (iv) Name the following:

- (b) $CH_3-CH_2CH = CH_2$
- (v) Show the covalent bond formation in nitrogen molecule.

SECTION - E (Source Based/Case Based Questions)

37. The most obvious outcome of the reproductive process is the generation of individuals of similar design, but in sexual reproduction they may not be exactly alike. The resemblances as well as differences are marked. The rules of heredity determine the process by which traits and characteristics are reliably inherited. Many experiments have been done to study the rules of inheritance.

4

Why an offspring of human being is not a true copy of his parents in sexual reproduction?

1

31/4/3

19

[P.T.O.

- (ii) पौधों में वंशागित के प्रयोगों को करते समय F_1 और F_2 संतित के पौधों में क्या अन्तर पाया जाता है ?
- हम यह क्यों कहते हैं कि किसी स्पीशीज़ के अस्तित्व की वृद्धि के लिए विभिन्नता (iii) (A) आवश्यक है ? 2

अथवा

मेंडल के दो विपर्यासी लक्षणों वाले जोडों के पौधों के बीच संकरण का अध्ययन (iii) (B) कीजिए।

> RRYY rryy गोल पीले झरींदार हरे

उन्होंने F_2 संतित के पौधों में चार प्रकार के संयोजनों का प्रेक्षण किया। ये चार नये संयोजन क्या थे ? F_2 संतित में वह नए संयोजन, जो जनक पौधों में उपस्थित नहीं थे, क्यों दृष्टिगोचर हए?

- किसी माध्यम की प्रकाश को अपवर्तित करने की क्षमता को उसके प्रकाशिक घनत्व के पदों में 38. 4 व्यक्त किया जाता है। प्रकाशिक घनत्व का एक निश्चित संपृक्तार्थ है। यह द्रव्यमान घनत्व के समान नहीं है। दो माध्यमों की तुलना करने पर जिस पदार्थ का अपवर्तनांक अधिक होता है वह दूसरे पदार्थ की तुलना में अधिक प्रकाशिक सघन माध्यम कहा जाता है। अन्य माध्यम जिसका अपवर्तनांक निम्न है, प्रकाशिक विरल होता है। किसी दिए गए माध्यम में प्रकाश की चाल उसके प्रकाशिक घनत्व के व्युत्क्रमानुपाती होती है।
 - यदि हीरे का निर्वात के सापेक्ष अपवर्तनांक 2.42 है, तो हीरे में प्रकाश की चाल निर्धारित (i) कीजिए। निर्वात में प्रकाश की चाल 3×10^8 m/s है।
 - (ii) काँच, जल और कार्बन डाइसल्फाइड के अपवर्तनांक क्रमशः 1.5, 1.33 और 1.62 हैं। यदि कोई प्रकाश किरण इन माध्यमों पर समान कोण (मान लीजिए θ) पर आपतन करती है, तो इन माध्यमों में अपवर्तन कोणों को आरोही (बढते) क्रम में लिखिए। 1
 - (iii) (A) काँच में प्रकाश की चाल $2\times10^8\,\mathrm{m/s}$ और जल में प्रकाश की चाल $2.25 \times 10^8 \text{ m/s } = 10^8 \text{ m/s}$ 2

20

1

2

- (ii) While performing experiments on inheritance in plants, what is the difference between F_1 and F_2 generation?
- (iii) (A) Why do we say that variations are useful for the survival of a species over time?

OR

(iii) (B) Study Mendel's cross between two plants with a pair of contrasting characters.

> **RRYY** rryy Round Yellow Wrinkled Green

He observed 4 types of combinations in F_2 generation. Which of these were new combinations? Why do new features which are not present in the parents, appear in F₂ generation?

- 38. The ability of a medium to refract light is expressed in terms of its optical 4 density. Optical density has a definite connotation. It is not the same as mass density. On comparing two media, the one with the large refractive index is optically denser medium than the other. The other medium with a lower refractive index is optically rarer. Also the speed of light through a given medium is inversely proportional to its optical density.
 - Determine the speed of light in diamond if the refractive index of diamond with respect to vacuum is 2.42. Speed of light in vacuum is $3 \times 10^{8} \text{ m/s}.$
 - (ii) Refractive indices of glass, water and carbon disulphide are 1.5, 1.33 and 1.62 respectively. If a ray of light is incident in these media at the same angle (say θ), then write the increasing order of the angle of refraction in these media.
 - The speed of light in glass is 2×10^8 m/s and in water is (iii) (A) 2.25×10^8 m/s. 2

[P.T.O.

1

2

2

1

1

31/4/3

Get More Learning Materials Here:

- (a) इनमें से कौन अधिक प्रकाशिक सघन है और क्यों ?
- (b) किसी जल से भरे मोटे काँच के पात्र के काँच-जल अन्तरापृष्ठ पर कोई प्रकाश किरण अभिलम्बवत् आपतन करती है। इस किरण के काँच में प्रवेश करने के पश्चात् पथ का क्या होगा ? कारण दीजिए।

अथवा

(iii) (B) जल और काँच के निरपेक्ष अपवर्तनांक क्रमशः 4/3 और 3/2 हैं। यदि काँच में प्रकाश की चाल 2×10^8 m/s है, तो (i) निर्वात और (ii) जल में प्रकाश की चाल ज्ञात कीजिए।

2

कुछ आयनी यौगिकों के गलनांक और क्वथनांक नीचे दिए गए हैं : 39.

4

यौगिक	गलनांक (K)	क्वथनांक (K)
NaCl	1074	1686
LiCl	887	1600
CaCl ₂	1045	1900
CaO	2850	3120
$MgCl_2$	981	1685

इन यौगिकों को आयनिक यौगिक कहने का कारण यह है कि ये धातु से अधातु में इलेक्ट्रॉनों के स्थानान्तरण द्वारा बनते हैं। इस प्रकार के यौगिकों में इलेक्ट्रॉनों के स्थानान्तरण को, इन यौगिकों के बनने में भाग लेने वाले तत्त्वों के इलेक्ट्रॉन-विन्यास नियंत्रित करते हैं। प्रत्येक तत्त्व की अपनी निकटतम उत्कृष्ट गैस के पूर्ण रूप से भरे संयोजकता कोश अथवा स्थायी अष्टक को प्राप्त करने की प्रवृत्ति होती है।

मैग्नीशियम क्लोराइड के बनने में होने वाले इलेक्ट्रॉन-स्थानान्तरण को दर्शाइए।

1

(ii) उच्च गलनांक और उच्च क्वथनांक के अतिरिक्त आयनी यौगिकों के किन्हीं अन्य दो गुणधर्मों की सूची बनाइए।

1

(iii) (A) किसी आयनी यौगिक जैसे सोडियम क्लोराइड में सोडियम परमाण् किस प्रकार स्थायी विन्यास प्राप्त करता है ?

2

अथवा

(iii) (B) कारण दीजिए:

2

आयनी यौगिक ठोस अवस्था में विद्युत चालन क्यों नहीं करते हैं ?

22

(ii) सोडियम क्लोराइड के जलीय विलयन में धारा प्रवाहित करने पर कैथोड पर क्या होता है ?

- Which one of the two is optically denser and why? (a)
- (b) A ray of light is incident normally at the water-glass interface when it enters a thick glass container filled with water. What will happen to the path of the ray after entering the glass? Give reason.

OR

(iii) (B) The absolute refractive indices of water and glass are 4/3 and 3/2 respectively. If the speed of light in glass is 2×10^8 m/s, find the speed of light in (i) vacuum and (ii) water.

39. The melting points and boiling points of some ionic compounds are given below:

4

2

Compound	Melting Point (K)	Boiling Point (K)
NaCl	1074	1686
LiCl	887	1600
CaCl ₂	1045	1900
CaO	2850	3120
$MgCl_2$	981	1685

These compounds are termed ionic because they are formed by the transfer of electrons from a metal to a non-metal. The electron transfer in such compounds is controlled by the electronic configuration of the elements involved. Every element tends to attain a completely filled valence shell of its nearest noble gas or a stable octet.

(i) Show the electron transfer in the formation of magnesium chloride.

1

1

(ii) List two properties of ionic compounds other than their high melting and boiling points.

(iii) (A) While forming an ionic compound say sodium chloride how does sodium atom attain its stable configuration?

2

OR

23

(iii) (B) Give reasons: 2

- Why do ionic compounds in the solid state not conduct electricity?
- What happens at the cathode when electricity is passed through an aqueous solution of sodium chloride?

31/4/3

Strictly Confidential: (For Internal and Restricted use only) Secondary School Examination, 2023 Marking Scheme – Science (SUBJECT CODE -086) (PAPER CODE -31/4/3)

General Instructions: -


- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2. "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- 3. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4. The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- 5. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 6. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{}$)while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 7. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 8. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- 10. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

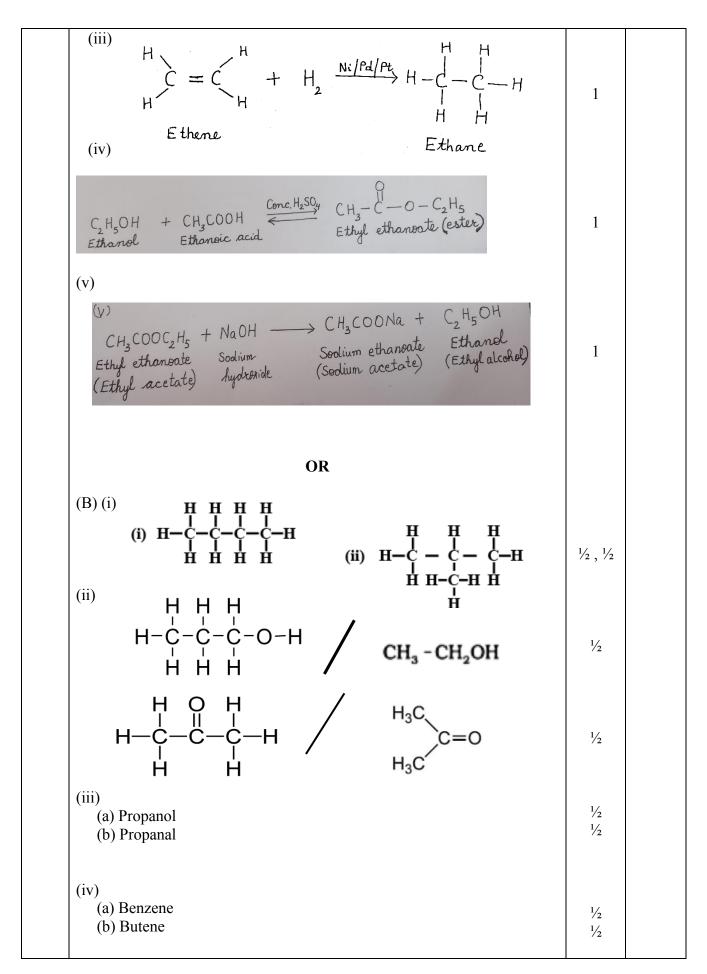
- 11. A full scale of marks <u>80</u> (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 12. Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
- 13. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying / not same.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 14. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 15. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 16. The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation. Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 17. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 18. The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME

Secondary School Examination, 2023 SCIENCE (Subject Code-086) [Paper Code:31/4/3]

	Maximum Marks: 80				
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks		
	SECTION A				
1.	(b)	1	1		
2.	(c)	1	1		
3.	(d)	1	1		
4.	(b)	1	1		
5.	(c)	1	1		
6.	(c)	1	1		
7.	(b)	1	1		
8.	(b)	1	1		
9.	(b)	1	1		
10.	(d)	1	1		
11.	(a)	1	1		
12.	(a)	1	1		
13.	(c)	1	1		
14.	(b)	1	1		
15.	(d)	1	1		
16.	(b)	1	1		
17.	(d)	1	1		
18.	(a)	1	1		
19.	(b)	1	1		
20.	(c)	1	1		
	SECTION B				
21.	AuxinAuxins slowly diffuse towards the shady side of the shoot which	1			
	stimulate cells on the shady side to grow longer, causing the plant to bend towards light.	1	2		
22.	(A) (i) • Copper (II) chloride / Copper chloride / Cupric chloride / CuCl ₂	1/2			
	• colour- blue-green.	1/2			
	(ii) $CuO + 2HCl \rightarrow CuCl_2 + H_2O$	1			
	OR				
	(B) X : Sodium Chloride / NaCl	1/2			
	Y: Hydrogen /H ₂	1/2			
	Z : Chlorine / Cl ₂	1/2			
	B : Bleaching powder / CaOCl ₂	1/2	2		
23.	• The plant kept in dark is unable to carry out photosynthesis and due to absence of oxygen it cannot respire.	1			
	• But the plant kept in light is able to photosynthesize converting CO ₂ into oxygen which it can use for respiration.	1	2		
24.	• Lymph	1			

	• Functions:		
		1/	
	(i) carries digested and absorbed fat from intestine.	1/2	2
	(ii) drains excess fluid from extracellular space back into the blood.	1/2	2
25.	Gardens have biotic components like plants, and animals. All these living		
	organisms interact with each other and with abiotic components of	2	
	ecosystem like water, air and soil.		2
26.	(A) (i) Myopia / Short Sightedness	1/2	
20.	(ii) • Excessive curvature of eye lens	1/2	
	` '	1/2	
	• Elongation of eye ball		
	(iii) Concave lens /Diverging Lens	1/2	
	OR		
	(B) • Size of particles in the atmosphere is smaller than the wavelength of	1	
	visible light, so they scatter light of shorter wavelengths i.e. blue.	1	
	 In space, there is no scattering of light due to absence of 		
	1 ,	1	2
	particles. (no atmosphere)	1	2
	SECTION C		
27.	(a) •7	1/2	
_ / .	` '	1/2	
	• salt of strong acid and strong base	1/2	
	(b) • Pink / orange		
	 salt of weak base and strong acid 	1/2	_
	(c) • No change / remain blue	1	3
28.	(i) • To increase the conductivity of water	1/2	
20.	- · · · · · · · · · · · · · · · · · · ·	$\frac{1}{2}, \frac{1}{2}$	
	• Hydrogen – cathode Oxygen – anode	72, 72	
	Anode : Cathode		
	1: 2		
	/Volume of hydrogen liberated at cathode is twice that of oxygen	1/2	
	liberated at anode.		
	(ii) • White silver chloride turns grey	1/2	
	Decomposition reaction / Photolytic Decomposition	1/2	3
29.	Given,		
	Distance of object, $u = -20$ cm		
	1		
	Magnification $m = \frac{1}{2}$		
	<u></u>		
	$\therefore m = \frac{-v}{u} \Rightarrow v = -\frac{1}{2} \times -20 = 10 \text{ cm}$	$\frac{1}{2}, \frac{1}{2}$	
	$u \rightarrow v \rightarrow 2$, -, , -	
	Using mirror formula		
	1_1_1	1/	
	$\begin{vmatrix} \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \\ \frac{1}{f} = \frac{1}{10} - \frac{1}{20} = \frac{1}{20} \end{vmatrix}$	1/2	
	$\frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1}$		
	f = 20 cm	1/2	
	$ \mathbf{Ifm} = \frac{1}{2} \text{ and } \mathbf{v}^{2} \text{ and } \mathbf$		
	If $m = \frac{1}{3}$ and v' and u' are the corresponding image distance and object		
	1 ,,,		
	distance. $\frac{1}{3} = \frac{-v'}{u'} \Rightarrow v' = \frac{-u'}{3}$	1/2	
	3 u 3	/2	
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$		
	$\begin{vmatrix} \frac{1}{f} = \frac{1}{v'} + \frac{1}{u'} \\ \frac{1}{f'} = \frac{1}{v'} + \frac{1}{u'} \end{vmatrix}$		
	$\frac{1}{20} = \frac{-3}{u'} + \frac{1}{u'} \Rightarrow \frac{1}{20} = \frac{-2}{u'}$		
	20 w w 20 w		



	u' = -40 cm.	1/2	3
30.	(A) (i) Food enters through a specific spot with the help of movement of cilia.	1	
	(ii)(a) Creates an acidic medium which facilitates the action of enzyme / kills microorganisms ingested with the food.	1/2	
	(b) Digestion of proteins (c) Mixing the food thoroughly with digestive juices. / pushes food	1/2	
	forward by peristalsis.	1/2	
	(d) Conversion of starch into sugar	1/2	
	OR		
	(B) (i) Blood goes through the heart twice during each cycle. (ii) ● To prevent oxygenated and deoxygenated blood from mixing for	1	
	efficient supply of oxygen to the body.	1	
	 It helps birds and mammals who have high energy needs and constantly use energy to maintain their body temperature. 	1	3
31.	(A) (i) Alternating current can be transmitted over long distances	1	
	without much loss of electric energy.		
	(ii) Household supply – Alternating current (AC)	1/2	
	Battery of Dry cell – Direct current (DC)	1/2	
	(iii) It melts and breaks the circuit when a current of higher value than	1	
	its rating flows through it. OR	1	
	(B) •		
	Magnetic field lines		
	Tield lines		
	Salamald		
	Solenold		
	mmmm	1	
	S		
	77777777		
	+11=		
	B X		
	[Deduct ½ mark if direction of current or magnetic field is not marked]		
	Maximum at A	1/2	
	Magnetic field lines are crowded. /		
	Magnetic field adds up due to 'n' number of turns of a solenoid.	1/2	

	Minimum at B		1/2	
	Magnetic field lines are far apar	t	/2 1/ ₂	3
32.	• Winghere field files are far apar	t.	72	
J2.	Biodegradable	Non-biodegradable		
	Biodegradable wastes can be	Non-biodegradable wastes	1	
	broken down by biological	cannot be broken down by		
	processes.	biological processes.		
	• Impact of accumulated biodegrada	able wastes:		
	(i) Foul smell		1/2	
	(ii) Breeding place for carriers	s of diseases (or any other)	1/2	
	• Impact of accumulated non-biodeg	gradable wastes:		
	(i) Biological Magnification		1/2	_
	(ii) Affect soil fertility.	(or any other)	1/2	3
33.	(A)			
	• The splitting up of white light into		1	
	colours while passing through a glass	s prism is called dispersion of white		
	light.		1/2	
	• (i) Violet bends the most		1/2	
	• (ii) Red bends the least		, -	
	white light Prism	R O Y G B I V	1	
		OR		
	(B)			
	• A rainbow is a natural spectrum of rainfall.	sunlight appearing in the sky after the	1	
	Ra	uindrop		
	Sunlight			
			2	
	Red Violet			
				3

	SECTION D		
34.	 (i) The two modes of asexual reproduction observed in hydra are: <u>Budding</u>: A bud develops as an outgrowth. These buds develop into tiny individuals. When fully matured it detaches from the parent 	1/2, 1	
	 body and become new independent individual. Regeneration: Hydra can be cut into any number of pieces and each piece grows into a complete organism. 	1/2,1	
	(ii) Definition: When any vegetative part of plants like root, stem or leaf is used to grow new plants.Advantages: -	1	
	 Plants can bear flowers and fruits earlier than those produced from seeds. It enables the propagation of plants such as banana, orange, rose 		
	and jasmine which have lost the capacity to produce seeds.3. The plants produced are genetically similar enough to the parent plant to have all the characteristics.	1/2, 1/2	_
	(Any two)		5
35.	(i) Current flowing through a conductor is directly proportional to the potential difference. $/ V\alpha I / I \alpha V$	1	
	Resistance		
	+V V V V-		
		1	
	(Any one diagram)		
	(ii)Since ammeter is connected in series, it should not increase the resistance of the circuit. / should allow maximum current to flow through the circuit.	1	
	(iii) • Series combination - Graph A	1/2	
	Less slope and more resistance	$\frac{1}{2}$ $\frac{1}{2}$	
	 Parallel combination - Graph B More slope and less resistance 	1/2	5
36.	(A) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	1	
	(ii) CH ₃ - CH ₂ OH Alkaline KMnO ₄ + Heat Or acidified K ₂ Cr ₂ O ₇ + Heat CH ₃ COOH	1	
	Ethanol Ethanoic Acid	1	

X_086_31/4/3_Science#Page- 8

	$\begin{pmatrix} x & x & x & x & x & x & x & x & x & x $		1	5
	SECTI	ION E		
37.	(i) Sexual reproduction involves the function which combines to the characters of (ii)	of both parents and cause variation.	1	
	F ₁ generation	F ₂ generation		
	• In F ₁ generation only the dominant traits are expressed.	• In F ₂ generation both dominant and recessive traits are expressed.		
	• It refers to the offspring/ plants resulting immediately from a cross between the first set of parents.	• It refers to the offspring/plants resulting from a cross among the plants of F ₁	1	
		generation. [Any one]	1	
	(iii) (A) Because if a niche of population population could be wiped out. However, population they have some chance of some	ion of organisms is altered, the whole ver, if variation is present in this	2	
	[Alternate answer] If there is a population of bacteria living temperature were to be increased by gowould die, but a few variants resistant further. Thus, variations are useful for	lobal warming, most of the bacteria to heat would survive and grow		
	OR			
	(iii) (B) • Wrinkled, yellow		1/2	
	Dound groon			
	Round, green		1/2	
	• If two or more traits are invo	olved, their genes are independently	1/2	4
38.	• If two or more traits are investigated inherited irrespective of the continuous (i) Refractive index of diamond = $\frac{Sp}{Spe}$	ombination present in parents. need of light in vacuum need of light in diamond		4
38.	• If two or more traits are investigated inherited irrespective of the control o	ombination present in parents. need of light in vacuum need of light in diamond	1	4
38.	• If two or more traits are investing inherited irrespective of the constant (i) Refractive index of diamond = $\frac{sp}{spec}$ Speed of light in diamond = $\frac{3 \times 10}{2}$ (ii) $\angle r$ in carbon disulphide < $\angle r$ in gl	eed of light in vacuum eed of light in vacuum eed of light in diamond $\frac{8 \text{ m} / \text{s}}{42} = 1.23 \times 10^8 \text{ m/s}$	1 1/2	4
38.	• If two or more traits are investigated inherited irrespective of the continuous inherited irrespective irrespective inherited irrespective irrespective irrespective irrespective irrespective irrespective irrespective irrespective irrespect	embination present in parents. where the dight in vacuum where the dight in diamond $\frac{8 \text{ m/s}}{42} = 1.23 \times 10^8 \text{ m/s}$ ass $< \angle r$ in water	1 1/2 1/2	4

	(b) Light will enter from water to glass without bending (undeviated /	1	
	straight) because in this case $\angle i = 0$; $\angle r = 0$.		
	OR		
	(iii) (B)		
	$n_{\text{glass}} = \frac{3}{2}$		
	$n_{\text{water}} = \frac{4}{3}$		
	"Water 3		
	0 409 /		
	$v_{\text{glass}} = 2 \times 10^8 m/s$		
	$\frac{1}{2}$ speed of light in vacuum(c)		
	$n_{glass} = \frac{speed of light in vacuum(c)}{speed of lightglass(v_g)}$		
	$c = n_{glass} \times v_{glass}$		
	$=\frac{3}{2}\times2\times10^8m/s$		
	$= 3 \times 10^8 m/s$	1	
	$v = \frac{c}{c} = \frac{3 \times 10^8 m/s}{c}$		
	$v_{\text{Water}} = \frac{c}{n_{water}} = \frac{3 \times 10^8 m/s}{\frac{4}{3}}$		
	5		
	$=\frac{9}{4} \times 10^8 \text{ m/s or } 2.25 \times 10^8 \text{ m/s}$	1	4
	$-\frac{1}{4}$ × 10° 111/8 01 2.23 × 10° 111/8	1	4
39.	(i)		
37.			
	× C1 ×	1	
	$Mg : \begin{array}{c} \times \times$	1	
	$Mg \overset{\checkmark}{\circ} + \overset{\times}{\overset{\times}{\overset{\times}{\longrightarrow}}} \longrightarrow (Mg^{2+}) \begin{vmatrix} \overset{\times}{\circ} \overset{-}{\circ} \\ \overset{\circ}{\circ} \overset{-}{\circ} \overset{-}{\circ} \end{vmatrix}$		
	×ĈÎ× L^ ^ J²		
	× × ^		
	(ii)		
	• They are hard solids		
	They are soluble in water		
	They conduct electricity in aqueous solution or molten state	$\frac{1}{2}, \frac{1}{2}$	
	[Any other]		
	[Any two]		
	(iii) (A) • Sodium atom has one electron in its outermost shell	1	
		1	
	• It attains its nearest noble gas configuration by losing this electron	4	
	forming Na ⁺ ion / Na \rightarrow Na ⁺ + e ⁻	1	
	2,8,1 2,8		
	stable		
	OR		
	(iii) (B) (i) Because movement of ions in the solid is not possible due to		
	their rigid structure.	1	_
	(ii) H ₂ gas is liberated at cathode.	1	4
	(1) 112 500 10 11001000 01 00111000.	1	